Modulations of spinal serotonin activity affect the development of morphine tolerance.
نویسندگان
چکیده
To test whether modulations of spinal serotonin (5-HT) levels would affect the development of morphine tolerance, we treated rats with either intrathecal 5-HT or 5,7-dihydroxytryptamine (5,7-DHT; a 5-HT neurotoxin) in addition to systemic infusion with morphine (2 mg x kg(-1) x h(-1)). Continuous infusion of 5-HT (10 microg x 6 microL(-1) x h(-1)) into the lumbar subarachnoid space of rats for 9 h accelerated the development of morphine tolerance. The area under the curve for the tail-flick latency test was 454.1 +/- 35.1 in the Sham Control group vs 327.6 +/- 41.0 in the 5-HT-Infused group. mu-opioid receptor binding in the lumbar spinal cord showed a decrease in the Bmax (maximal binding -46.5%), but not the binding affinity (Kd), in 5-HT-infused rats. However, intrathecal injection of 5,7-DHT (50 microg), which resulted in a 48% reduction in 5-HT and 51% reduction in 5-hydroxyindoleacetic acid concentrations, led to an attenuation of morphine tolerance (the area under the curve was 613.0 +/- 24.7 in the 5,7-DHT-Lesioned group). The binding study indicated that the affinity of lumbar micro-opioid receptors decreased 196% in 5-HT-depleted rats, whereas there was no effect on apparent binding. The infusion of 5-HT (10 microg x 6 microL(-1) x h(-1)) was not analgesic and the 5,7-DHT-induced lesion did not affect acute morphine-induced analgesia. We conclude that activity of spinal 5-HT-containing neurons plays a crucial role during the development of morphine tolerance.
منابع مشابه
Possible relevance of tolerance to analgesic effect of morphine due to chronic inflammatory pain and the role of lumbar spinal cord in this interaction
It has been reported that morphine tolerance does not develop in the presence of chronic pain. Therefore, this study was conducted to find out whether chronic inflammatory pain is able to eliminate or attenuate the developed tolerance to analgesic effect of morphine and also to investigate the role of lumbar spinal cord as a candidate site for this interaction. Tolerance was induced in adult ma...
متن کاملChanges in beta 1 and beta 2 integrin genes expression in rat lumbar spinal cord is supportive of the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia
Introduction: In order to study the alterations of beta 1 and 2 integrins mRNA level in rat lumbar spinal cord following the induction of chronic pain and its effect on the development of tolerance to morphine analgesia, we examined the level of expression of these genes in the presence of chronic pain, which is an inhibitor of morphine tolerance. We used induction of chronic pain alone and ...
متن کاملThe role of spinal serotonergic system in morphine withdrawal syndrome in the rat
Previous pharmacological studies have implicated serotonergic brain systems in opiate withdrawal syndrome. Increased brain 5-HT release is associated with the development of physical dependence to morphine. Specific serotonin reuptake inhibitors, such as fluvoxamine and sertraline reduce the severity of naloxone precipitated opioid withdrawal syndrome. Other studies have shown that 5-HT system ...
متن کاملThe role of spinal serotonergic system in morphine withdrawal syndrome in the rat
Previous pharmacological studies have implicated serotonergic brain systems in opiate withdrawal syndrome. Increased brain 5-HT release is associated with the development of physical dependence to morphine. Specific serotonin reuptake inhibitors, such as fluvoxamine and sertraline reduce the severity of naloxone precipitated opioid withdrawal syndrome. Other studies have shown that 5-HT system ...
متن کاملSpinal interaction between μ and δ opioid receptors in naive and morphine-tolerant rats
Background The role of δ opioid receptors in opioid antinociception and tolerance development is still unclear. In the spinal cord of morphine-tolerant mice δ receptor ligands given intrathecally (i.t.) differently influenced the antinociceptive effect of the μ agonist D-Ala2-methyl-glycinol (DAMGO). The δ1 agonist D-Pen2,5-enkephalin (DPDPE) inhibited, the δ2 agonist deltorphin II did not alte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesia and analgesia
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2001